

- Level monitoring relays for electrically conductive liquids
- Modular and plug-in versions
- Adjustable 2.5...200k Ω sensitivity
- Single and three-pole probes
- Float switches
- Start-up priority change relays.

Level monitoring relays

Modular version for conductive liquids

20-3
for conductive liquids
Sec. - Page

20-5
Probes, electrode holders and electrodes 20-6
Float switches 20-7
Float switches for grey water 20-7
Float switches for drinking water 20-8
Float switches for dirty water 20-8
Start-up priority change relays
Modular version 20-9
Plug-in version 20 - 9
Accessories 20-9
Dimensions 20-10
Wiring diagrams 20-11
Technical characteristics 20-14

Level control relays

- For conductive liquids
- Single, dual or multivoltage
- Emptying or filling functions
- Multifunctions
- Automatic reset

Modular and plug-in versions.

Page 20-6
PROBES, ELECTRODES AND ELECTRODE HOLDERS

- Single pole
- Three pole.

FLOAT SWITCHES

- Versions for grey water, drinking water and dirty water
- Versions with PVC and Neoprene cable
- Emptying or filling functions.

Page 20-9
START-UP PRIORITY CHANGE RELAYS

- 2 outputs
- Single or multivoltage
- Modular and plug-in versions.

Some permitted liquid substances				Liquid substances not permitted
Type of liquid	Resistivity k 2 cm	Type of liquid	Resistivity k Ω cm	- Purified water - Deionised water - Petrol - Oil - Liquid gases - Paraffin - Ethylene glycol - Paints - Liquids with a high percentage of alcohol
Drinking water	5... 10	Milk	~ 1	
Well water	2... 5	Whey	~ 1	
River water	2... 15	Fruit juices	~ 1	
Rainwater	15... 25	Vegetable juices	~ 1	
Sludge	0.5... 2	Soups	~ 1	
Seawater	~ 0.03	Wine	~ 2.2	
Salt water	~ 2.2	Beer	~ 2.2	
Natural/hard water	~ 5	Coffee	~ 2.2	
Chlorinated water	~ 5	Suds	~ 18	
Condensed water	~18			

N.B. The resistivity values in the table are purely indicative.

Single-voltage relay

ッロ" LVM20...

Multi-voltage relay

LVM25240

LVMKIT25

Dual-voltage relay

LVM30...

Order code	Auxiliary supply voltage	Type of output contact	Qty per pack	Wt
	$[\mathrm{V}] 50 / 60 \mathrm{~Hz}$	Ψ^{\prime}	n°	$[\mathrm{kg}]$

Emptying function.
Automatic reset.

LVM20A024	$24 V A C$	$1 \mathrm{C} / 0$ (SPDT)	1	0.215
LVM20A127	$110 \ldots . .127$ VAC	$1 \mathrm{C} / 0$ (SPDT)	1	0.215
LVM20A240	$220 \ldots . .240$ VAC	$1 \mathrm{C} / 0$ (SPDT)	1	0.215
LVM20A415	$380 \ldots . .415$ VAC	$1 \mathrm{C} / 0$ (SPDT)	1	0.215

Order code	Auxiliary supply voltage	Type of output contact	Qty per pack	Wt
	$[\mathrm{V}] 50 / 60 \mathrm{~Hz}$	4^{\prime}	n°	$[\mathrm{kg}]$

Emptying or filling functions.
Automatic reset.

LVM25240	$24 \ldots 240$ VAC/DC	$1 \mathrm{C} / 0$ (SPDT)	1	0.095

Level control relay LVM25 240 and SN1 electrodes kit.

LVMKIT25	Level control relay LVM125240 and two 11SN1 probes	1	0.192

Order code	Auxiliary supply voltage	Type of output contact	Qty per pack	Wt
	$[\mathrm{V}] 50 / 60 \mathrm{~Hz}$	4^{\prime}	n°	$[\mathrm{kg}]$

Emptying or filling functions.
Automatic reset.

LVM30A240	$24 / 220 \ldots 240$ VAC	2 C/0 (SPDT)	1	0.315
LVM30A415	$110 \ldots 127$ VAC $380 \ldots . .415 V A C$	2 C/O (SPDT)	1	0.315

Operational characteristics

- Used with 3 sensing electrodes, MIN, MAX and COM
- 2.5...50k Ω adjustable sensitivity
- Double insulation between each supply, electrodes and output relay circuits
- Fixed probe signal delay: <1s
- Green LED indicator for power on
- Red LED indicator for output relay state
- Modular DIN 43880 housing (2 modules)
- IEC degree of protection: IP40 on front (only when mounted in housing or electric board with IP40); P20 on terminals.

Certifications and compliance

Certifications obtained: UL Listed, EAC, for USA and Canada (cULus-File E93601), as Auxiliary Devices - Level control relays.
Compliant with standards: IEC/EN/BS 60255-27,
IEC/EN/BS 61000-6-2, IEC/EN/BS 61000-6-3, UL508,
CSA C22.2 no. 14.

Probes and electrode holders

Use probes and electrode holders type:
11SN1/31PS31/31PS3S/31SCM/31CGL or similar (see page 20-6).

Operational characteristics

- Used with 3 sensing electrodes, MIN, MAX and COM
- $2.5 . . .100 \mathrm{k} \Omega$ adjustable sensitivity
- Insensitivity to stray electrode-cable capacitance
- Programming selector for emptying or filling function with fail-safe operation
- Double insulation between each supply, electrodes and output relay circuits
- Fixed probe signal delay: <1s
- Green LED indicator for power on
- Red LED indicator for output relay state
- Modular DIN 43880 housing (1 module)
- IEC degree of protection: IP40 on front (only when mounted in housing or electric board with IP40); P20 on terminals

Certifications and compliance

Certifications obtained: UL Listed, for USA and Canada (cULus-File E93601), as Auxiliary Devices - Level contro relays, EAC
Compliant with standards: IEC/EN/BS 60255-27,
IEC/EN/BS 60255-26, UL508, CSA C22.2 $\mathrm{n}^{\circ} 14$.

Probes and electrode holders

Use probes and electrode holders type:
11SN1/31PS31/31PS3S/31SCM/31CGL or similar (see page 20-6).

Operational characteristics

- Used with 3 sensing electrodes, MIN, MAX and COM
- 2.5 ... $50 \mathrm{k} \Omega$ adjustable sensitivity
- Programming selector for emptying or filling function with fail-safe operation
- Double insulation between each supply, electrodes and output relay circuits
- Adjustable probe signal delay: 1...10s or pump start delay: 0...300s
- Green LED indicator for power on
- Red LED indicator for output relay state
- Modular DIN 43880 housing (3 modules)
- IEC degree of protection: IP40 on front (only when mounted in housing or electric board with IP40); P20 on terminals.

Certifications and compliance

Certifications obtained: UL Listed, for USA and Canada (cULus-File E93601), as Auxiliary Devices - Level contro relays, EAC
Compliant with standards: IEC/EN/BS 60255-27,
IEC/EN/BS 61000-6-2, IEC/EN/BS 61000-6-3, UL508,
CSA C22.2 $\mathrm{n}^{\circ} 14$.

Probes and electrode holders

Use probes and electrode holders type
11SN1/31PS31/31PS3S/31SCM/31CGL or similar (see page 20-6).

Single-voltage multifunction relay

LVM40..

FUNCTIONS

EXAMPLE OF EMPTYING OPERATION
To achieve this type of operation, two electrodes are used to control the liquid between the fixed limits using MIN1 and MAX1 and two alarm levels using MIN2 and MAX2. When one of the alarm electrodes is wet, the alarm relay is de-energised
The alarm can be caused by pump malfunction, insufficient pump delivery capacity, MAX control level failure or MIN level electrode shorted.
With a proper connection, only the MIN alarm or MAX alarm can be activated or neither of the two can be activated so the relative output contacts can be used for pump control.

EXAMPLE OF EMPTYING OPERATION

This operation is obtained by using four electrodes positioned at four different levels and two relay outputs to control two pumps. For example, one can place the four electrodes, MIN1, MIN2, MAX1 and MAX2, in increasing order from the lowest to the highest levels and must control the tank emptying. Usually the level is controlled between the MIN1 and MAX1 levels by starting one of the two pumps. This case is different so the pumps can be maintained at the best efficiency and optimise their wear. When the liquid wets the MAX2 level and because the first pump is faulty or else a higher delivery capacity is needed, the second stand-by pump is activated to back up the first pump. When the liquid lowers and no longer wets the MIN2 level, the second pump is stopped and then when the MIN1 level is no longer wet, the first pump is stopped

C- Emptying with pump priority change.
D- Filling with pump priority change.
 too.

E- Tank filling and well drawing with alarm.

EXAMPLE

Two electrodes are used in this operation to control the tank level and another two for the well. One relay is used to activate the pump while the other for dry running / no water alarm.
When the well liquid wets the MAX2 level and the liquid wets the MIN1 tank level, the tank-filling pump is activated.
When the tank MAX1 level is wet, the pump is stopped. During the tank filling, the pump could stop before the MAX1 level is wet because the well MIN2 level is no longer wet.
Should the tank MIN1 level no longer be wet at which the pump should restart but the well MIN2 level is also no longer wet, then the alarm relay is de-energised.

Operational characteristics

- Use with 5 sensing electrodes, MIN1, MAX1, MIN2, MAX2 and COM
- 2.5...200k Ω adjustable sensitivity
- Adjustable sensitivity full-scale value: $25-50-100-200 \mathrm{ks}$
- Separate sensitivity adjustment of MAX electrodes for foam detection
- Insensitivity to stray electrode-cable capacitance
- Programming selector for 5 different functions:
- Emptying function and alarms (pos. A)
- Filling function and alarms (pos. B)
- Emptying function with pump priority start-up change (pos. C)
- Filling function with pump priority start-up change (pos. D)
- Well draining and tank filling and alarms (pos. E)
- Double insulation between each supply, electrodes and output relay circuits
- Adjustable probe signal delay: 1...10s
- Adjustable pump start delay: 0...30min
- Green LED indicator for power on
- Red LED indicators for output relay and electrode state
- Modular DIN 43880 housing (3 modules)
- IEC degree of protection: IP40 on front (only when mounted in housing or electric board with IP40);
IP20 on terminals.

Certifications and compliance

Certifications obtained: UL Listed, for USA and Canada (cULus-File E93601), as Auxiliary Devices - Level control relays, EAC.
Compliant with standards: IEC/EN/BS 60255-27,
IEC/EN/BS 61000-6-2, IEC/EN/BS 61000-6-3, UL508,
CSA C22.2 $\mathrm{n}^{\circ} 14$.

Probes and electrode holders

Use probes and electrode holders type:
11SN1/31PS31/31PS3S/31SCM/31CGL or similar (see page 20-6).

Single-voltage relay

31LV1E...

Order code	Auxiliary supply voltage	Type of output contact	Qty per pack	Wt
	$[V] 50 / 60 \mathrm{~Hz}$	4^{\prime}	n°	$[\mathrm{kg}]$

Emptying function.
Automatic reset.

31LV1E24	$24 V A C$	$1 \mathrm{C} / 0$ (SPDT)	1	0.263
31LV1E110	$110 \ldots 120 \mathrm{VAC}$	$1 \mathrm{C} / 0$ (SPDT)	1	0.263
31LV1E230	$220 \ldots 240$ VAC	$1 \mathrm{C} / 0$ (SPDT)	1	0.263
31LV1E400	$380 \ldots 415$ VAC	$1 \mathrm{C} / 0$ (SPDT)	1	0.263

Dual-voltage relay

31LV2E...

Order code	Auxiliary supply voltage	Type of output contact	Qty per pack	Wt
	$[V] 50 / 60 \mathrm{~Hz}$	4^{\prime}	n°	$\lfloor\mathrm{kg}\rfloor$

Emptying function.
Automatic reset.

31LV2E48	$24 / 48 \mathrm{VAC}$	$1 \mathrm{C} / 0$ (SPDT)	1	0.266
31LV2E220	$110 \ldots 120 \mathrm{VAC/}$ $220 \ldots .240 \mathrm{VAC}$	$1 \mathrm{C} / 0$ (SPDT)	1	0.266
31LV2E400	$220 \ldots 240 \mathrm{VAC/}$ $380 \ldots . .415 \mathrm{VAC}$	$1 \mathrm{C} / 0$ (SPDT)	1	0.266

Operational characteristics

- Used with 3 sensing electrodes, MIN, MAX and COM
- 7...8k fixed sensitivity
- Red LED indicator for output relay state
- Max. relay-electrode cable length: 500m/547yd
single-core, double insulated cables
- Mounting on 35mm/1.38" (IEC/EN/BS 60715) DIN rail or 8 -pin plug-in housing
- 8 -pin plug-in housing (socket 31S8, see page 20-9)
- IEC degree of protection: IP30.

Certifications and compliance

Certifications obtained: EAC
Compliant with standards: IEC/EN/BS 60255-27.

Probes and electrode holders

Use probes and electrode holders type
11SN1/31PS31/31PS3S/31SCM/31CGL or similar (see page 20-6).

Operational characteristics

- Used with 3 sensing electrodes, MIN, MAX and COM
- 7...8k Ω fixed sensitivity
- Red LED indicator for output relay state
- Max. relay-electrode cable length: 500m/547yd
single-core, double insulated cables
- Mounting on $35 \mathrm{~mm} / 1.38$ " (IEC/EN/BS 60715) DIN rail or 11-pin plug-in housing
- 11-pin plug-in housing (socket 31S11, see page 20-9)
- IEC degree of protection: IP30.

Certifications and compliance

Certifications obtained: EAC.
Compliant with standards: IEC/EN/BS 60255-27

Probes and electrode holders

Use probes and electrode holders type
11SN1/31PS31/31PS3S/31SCM/31CGL or similar (see page 20-6).

Probes and electrode holders

11SN1

31SCM...

31CGL125...

31PS31

31PS3S

Order code	Probe included	Probe length	Qty per pack	Weight
		[mm/in]	n°	[kg]
Single pole electrodes.				
11SN1	Yes	1001/3.9"	10	0.050
31SCM04	Yes	43/1.7"	1	0.060
31SCM50	Yes	500/19.7"	1	0.115
31SCM100	Yes	1000/39.4"	1	0.162
31CGL1253	Yes	327/12.9"	1	0.126
31CGL1255	Yes	500/19.7"	1	0.158
31 CGL1257	Yes	700/27.6"	1	0.208
31CGL12510	Yes	1000/39.4"	1	0.281
Three pole electrode.				
31PS31	Yes	300/11.8"	1	0.120
Electrode holder (for 3 rod probes).				
31PS3S	No	-	1	0.184

(1) Total electrode length.

Electrodes

31ASTA...

General characteristics

11SN1 SINGLE POLE PROBES
A single pole probe used for level control in wells or storage tanks. It comprises of an AISI 303 stainless steel electrode, a plastic (PPOX) holder and a cable gland.
A seal ring and the tightening of the cable gland PG7 prevent water from entering the cable terminal connector and causing its oxidation.
Cable connection: screw.
The external cable diameter must be 2.5 to $6 \mathrm{~mm} / \varnothing 0.1$ to 0.24 " to warrant perfect sealing.

Maximum connection cable section: $2.5 \mathrm{~mm}^{2}$
Maximum operating temperature: $+60^{\circ} \mathrm{C}$.
Application: tanks and deep wells.
31SCM... PROBES
A single pole probe used for level control on boilers, autoclaves and in general where pressure (10bar maximum) and high temperature $\left(+100^{\circ} \mathrm{C}\right.$ maximum $)$ are present. It comprises of an AISI 303 stainless steel electrode embedded in an aluminium oxide body and a $3 / 8^{\prime \prime}$ GAS threaded metal support holder.
Cable connection: threaded rod with nut.
Application: tanks, pressurised tanks and boilers.
31CGL125... PROBES
A single pole probe with AISI 302 electrode, used for level control on boilers and autoclaves and in general wherever pressure is maximum up to 10 bar .
Maximum operating temperature: $+180^{\circ} \mathrm{C}$
Threaded coupling: $3 / 8$ " GAS.
Cable connection: threaded rod with nut.
Application: tanks, pressurised tanks and boilers.

31PS31 PROBE

A small electrode holder, complete with three AISI 304
stainless steel probes.
Particularly suited to small containers whenever pressure is maximum up to 2 bar.
Maximum operating temperature: $+70^{\circ} \mathrm{C}$.
Threaded coupling: 1/2" GAS.
Faston termination; related lugs supplied.
Application: tanks and automatic dispensers.
31PS3S ELECTRODE HOLDER
A thermoset resin electrode holder to be used with three probes (rods probes to be ordered separately) and complete with terminal cover.
Maximum operating temperature: $+100^{\circ} \mathrm{C}$.
2" GAS threaded coupling.
Cable connection: screw.
Application: tanks.

Certification and compliance

Certification obtained: EAC
Compliant with standards: IEC/EN/BS 60255-27.

General characteristics

Stainless steel AISI 304 electrodes with 4M or 6M threaded extremity suitable as extensions for 31SCM... probe or as rod probe for 31PS3S electrode holder.
For connecting 31SCM... probes with electrode extension unit (31ASTA...MM4), see page 20-9.

Certification

Certification obtained: EAC.

For grey water	Order code	Cable material	Cable length	Counterweight included	Qty	Wt
			[m]		n°	[kg]
	LVFSP1W03	PVC	3	Yes	1	0.610
	LVFSP1W05	PVC	5	Yes	1	0.830
	LVFSP1W10	PVC	10	Yes	1	1.410
	LVFSP1W15	PVC	15	Yes	1	1.930
	LVFSP1W20	PVC	20	Yes	1	2.380
	LVFSN1W03	Neoprene	3	Yes	1	0.640
	LVFSN1W05	Neoprene	5	Yes	1	0.880
	LVFSN1W10	Neoprene	10	Yes	1	1.510
	LVFSN1W15	Neoprene	15	Yes	1	2.080
	LVFSN1W20	Neoprene	20	Yes	1	2.480

Emptying function

This function is achieved by connecting the black and blue float terminals. The level regulator contact closes the lower circuit at minimum level and opens the circuit when the float reaches the upper maximum level. The MIN and MAX levels can be adjusted by varying the distance between counterweight and float.

Start

Stop

This function is achieved by connecting the black and brown float terminals. The level regulator contact closes the upper circuit at maximum level and opens the circuit when the float reaches the lower minimum level. The MIN and MAX levels can be adjusted by varying the distance between counterweight and float.

General characteristics

Float switches are used in the automation of electrical equipment, such as: pumps, solenoid valves, alarms, motorised sluice gates, etc. All versions feature an internal changeover contact operated in accordance with the level of liquid where the float is located. The cables used are highquality and offer excellent mechanical or chemical resistance over time.
The cables are 3×1 type, that is 3 wires with section $1 \mathrm{~mm}^{2}$ This allows the user to choose the filling and emptying function during regulator wiring
They are used for the civil and industrial control of levels of grey water, e.g. rainwater, groundwater or cooling water from industry. They are available with PVC and neoprene cables of various lengths.

Operational characteristic

- Upper switching angle: $30^{\circ} \pm 5^{\circ}$
- Lower switching angle: $30^{\circ} \pm 5^{\circ}$
- 130 g external counterweight included
- Float casing material: polypropylene
- Cable A05 VV-F3X1 (PVC) available in lengths of 3, 5, 10, 15 and $20 \mathrm{~m} / 3.28,5.47,10.94,16.40$ and 21.87 yd and cable H07 RN-F3X1 (Neoprene) available in lengths of 3 , $5,10,15$ and $20 \mathrm{~m} / 3.28,5.47,10.94,16.40$ and 21.87 yd
- Rated cable diameter: $9 \mathrm{~mm} / 0.35$ " (PVC and Neoprene)
- Relay with changeover contact 10(8)A 250VAC 50/60Hz
- Maximum installation depth: 20m/21.26yd
- Maximum pressure: 2bar
- Operating temperature: $0 \ldots+50^{\circ} \mathrm{C}$
- Storage temperature: $-20 \ldots+80^{\circ} \mathrm{C}$
- IEC degree of protection: IP68
- Insulation class: II.

Certifications and compliance

Certifications: TÜV-SUD.
Compliant with standards: IEC/EN/BS 60730-1, IEC/EN/BS 60730-2-15.

For drinking water

Order code	Cable material	Cable length	Counter- weight included	Qty	Wt
		$[\mathrm{m}]$		n°	$[\mathrm{kg}]$
LVFSA1D03	PVC ACS+AD8	3	Yes	1	0.630
LVFSA1D05	PVC ACS+AD8	5	Yes	1	0.850
LVFSA1D10	PVC ACS+AD8	10	Yes	1	1.430
LVFSA1D15	PVC ACS+AD8	15	Yes	1	1.950
LVFSA1D20	PVC ACS+AD8	20	Yes	1	2.400

LVFSA1D...

This function is achieved by connecting the black and blue float terminals. The level regulator contact closes the lower circuit at minimum level and opens the circuit when the float reaches the upper maximum level. The MIN and MAX levels can be adjusted by varying the distance between counterweight and float.

Filling function

Emptying function

This function is achieved by connecting the black and brown float terminals. The level regulator contact closes the upper circuit at maximum level and opens the circuit when the float reaches the lower minimum level. The MIN and MAX levels can be adjusted by varying the distance between counterweight and float.

Order code	Cable material	Cable length	Counter- weight	Qty	Wt
		$[\mathrm{m}]$		n°	$[\mathrm{kg}]$
LVFSN1B05	Neoprene	5	Internal	1	1.250
LVFSN1B10	Neoprene	10	Internal	1	1.860
LVFSN1B15	Neoprene	15	Internal	1	2.460
LVFSN1B20	Neoprene	20	Internal	1	3.060

Emptying function(1)

This function uses two floats and is achieved by connecting the black and blue float terminals. The MIN and MAX levels can be adjusted by varying the position of the floats.

This function uses two floats and is achieved by connecting the black and brown float terminals. The MIN and MAX levels can be adjusted by varying the position of the floats.

(1) It is possible to use even a single float for black water, adjusting the level in a fixed range of 10 cm max, a solution which is not advisable for turbulent waters.

General characteristics

Float switches LVFS A1 D type are suitable for drinking water and foodstuffs applications such as aqueducts, fountains, aquariums, drinks, fish hatcheries, swimming pools, etc. They are realised with a non-toxic polypropylene outer shell, a stainless steel untreated sphere, and an AD8 cable with health certification ACS (Attestation de Conformité Sanitaire) with outer sheath with PVC suitable for drinkable water immersion and use with food products.
They are provided with stainless steel counter weight AISI 316.
All versions, which differ in the length of the cable, feature an internal changeover contact operated in accordance with the level of liquid where the float is located.
The cables are 3×1 type, that is 3 wires with section $1 \mathrm{~mm}^{2}$. This allows the user to choose the filling and emptying function during regulator wiring.

Operational characteristics

- Upper switching angle: $30^{\circ} \pm 5^{\circ}$
- Lower switching angle: $30^{\circ} \pm 5^{\circ}$
- Stainless steel counterweight AISI 316 included
- Float casing material: polypropylene
- PVC cable ACS + AD8 certified
- Microswitch with changeover contact: 10(8)A 250VAC $50-60 \mathrm{~Hz}$
- Maximum installation depth: $20 \mathrm{~m} / 21.87 \mathrm{yd}$
- Maximum pressure: 2bar
- Operating temperature: $0 \ldots+50^{\circ} \mathrm{C}$
- Storage temperature: $-20 \ldots+80^{\circ} \mathrm{C}$
- Degree of protection: IP68
- Insulation class: II.

Certifications and compliance

Certifications: Health certification ACS (Attestation de Conformité Sanitaire) for the cable.
Compliant with standards: IEC/EN/BS 60730-1,
IEC/EN/BS 60730-2-15

General characteristics

These float switches are used for the civil and industrial control of levels of dirty water, e.g. sewage or waste water from industry. The float switches comprises of a one-piece external blow-moulded polypropylene casing, with fixed internal counterweight located in the cable exit area. The regulator contact is positioned centrally in its own watertight chamber. This is insulated from the external casing by injecting closed-cell foam. This solution further increases protection against moisture leakage and heat insulates the watertight chamber housing the contact, eliminating the creation of condensation.

Operational characteristics

- Upper switching angle: $30^{\circ} \pm 5^{\circ}$
- Lower switching angle: $20^{\circ} \pm 5^{\circ}$
- Internal counterweight
- Float casing material: polypropylene
- Cable H07 RN-F3X1 (Neoprene) available in lengths of 5, 10,15 and $20 \mathrm{~m} / 5.47,10.94,16.40$ and 21.87 yd
- Rated cable diameter: $9 \mathrm{~mm} / 0.35^{\prime \prime}$
- Relay with changeover contact 10(4)A 250VAC 50/60Hz
- Maximum installation depth: 100m/109.36yd
- Maximum pressure: 10bar
- Operating temperature: $0 \ldots+40^{\circ} \mathrm{C}$
- Storage temperature: $-20 \ldots+80^{\circ} \mathrm{C}$
- IEC degree of protection: IP68
- Insulation class: II.

Certifications and compliance

Certifications: TÜV-SUD.
Compliant with standards: IEC/EN/BS 60730-1.
IEC/EN/BS 60730-2-15.

Modular version

LVMP10...

Plug-in version

31CSP2E...

Order code	Auxiliary supply voltage	Type of output contacts	Qty per pack	Weight
	$[\mathrm{V}]$	$\mathrm{\jmath}^{\prime}$	n°	$[\mathrm{kg}]$

2 outputs. AC and DC supply voltage.

LVMP05	$24 / 48 V D C$ $24 \ldots . .240 V A C$	2NO with same common	1	0.090

2 outputs. AC supply voltage.
Possible starting of stand-by motor.

LVMP10A024	24VAC	2 NO (SPST)	1	0.250
LVMP10A127	$110 \ldots 127$ VAC	2 NO (SPST)	1	0.250
LVMP10A240	$220 \ldots 240$ VAC	2 NO (SPST)	1	0.250
LVMP10A415	$380 \ldots 415$ VAC	2 NO (SPST)	1	0.250

Order code	Auxiliary supply voltage	Type of output contacts	Qty per pack	Weight
	$[\mathrm{V}] 50 / 60 \mathrm{~Hz}$	ζ^{\prime}	n°	$[\mathrm{kg}]$

2 outputs. AC supply voltage.
Possible starting of stand-by motor.

31CSP2E24	24VAC	2 NO (SPST)	1	0.150
31CSP2E110	110VAC	2 NO (SPST)	1	0.150
31CSP2E220	220VAC	2 NO (SPST)	1	0.150
31CSP2E230	$230 . .240 V A C$	2 NO (SPST)	1	0.150

Order code	Description	Qty per pack	Weight
$\underline{31 R E 213}$	Coupler unit for 31SCM... with electrode extension ASTA...MM4	1	0.008
$\underline{31 S 8}$	8-pin socket for screw fixing or mounting on 35mm/1.38" DIN rail (IEC/EN/BS 60715), used with LV1E... relay. Screw terminals	10	0.061
$\underline{31 S 11}$	11-pin socket for screw fixing or mounting	10	0.064
on 35mm/1.38" DIN rail (IEC/EN/BS 60715), used	with LV2E... and		
CSP2E... relays. Screw terminals	Relay-socket retention bracket; 31S8 or 31S11 types only	10	0.001
$\underline{31 R E 014}$			

31 RE213

31S8

31 S11

Accessories

岗

General characteristics

Priority change relays are designed to balance the operating time and hence the wear of pumps, compressors, generators, when two units, primary and stand-by, are installed.

Operational characteristics

- Operating limits: 0.85...1.1 Ue
- Connection: permanent
- Green LED indicator for power on
- Red LED indicators for output relay state 1 for LVMP05, 2 for LVMP10
- Modular DIN 43880 housing (1 module LVMP05, 3 modules LVMP10)
- IEC degree of protection: IP40 on front (only when mounted in housing or electric board with IP40); IP20 on terminals.

Certifications and compliance

Certifications obtained: UL Listed, for USA and Canada (cULus-File E93601), as Auxiliary Devices - Automatic starting control, EAC.
Compliant with standards: IEC/EN/BS 60255-27,
IEC/EN/BS 61000-6-2, IEC/EN/BS 61000-6-3, UL508,
CSA C22.2 $\mathrm{n}^{\circ} 14$.

General characteristics

Priority change relays are designed to balance the operating time, and hence the wear of pumps, compressors, generators, when two units, primary and stand-by, are installed.

Operational characteristics

- Operating limits: 0.85...1.1 Ue
- Connection: permanent
- Voltage applied to input contacts: 15VDC not insulated at power supply
- Input contacts current consumption: about 1 mA .
- 11-pin plug-in housing (see socket 31S11).
- IEC degree of protection: IP30.

Certifications and compliance
Certifications obtained: EAC.
Compliant with standards: IEC/EN/BS 60255-27,
IEC/EN/BS 61000-6-2, IEC/EN/BS 61000-6-3.

Operational characteristics
SOCKETS FOR INSTALLING PLUG-IN LEVEL CONTROL RELAYS.

- Max. wire section for sockets: $2 \times 2.5 \mathrm{~mm}^{2} / 2 \times 14 \mathrm{AWG}$
- Tightening torque: $0.8 \mathrm{Nm} / 7.1 \mathrm{lb}$.in
- Ratings: 10A-400VAC.

Certifications and compliance

Certifications obtained: EAC.
Compliant with standards: IEC/EN/BS 61984,
IEC/EN/BS 61210, IEC/EN/BS 60999-1.

LEVEL CONTROL AND START-UP PRIORITY CHANGE RELAYS
LVM25... - LVMPO5

LVM20...

LVM30... - LVM40... - LVMP10

31LV1E... - 31LV2E...-31CSP2E...

ELECTRODES		Coupler unit
31ASTA460MIM4	31ASTA460MM6	
31ASTA960MM4	31ASTA960MM6	
$7 \mathrm{~T}^{\text {M4 }}$	$7 \square^{\text {M6 }}$	
[51	$7{ }^{\text {m4 }}$
$\stackrel{9}{9}-\left(-640_{\left(0.16^{\prime \prime}\right)}\right.$	$\stackrel{\text { ¢ }}{\text { com }}$ - - - 06	
\%		
\%		
$\stackrel{\infty}{\square}$		$\rightarrow L_{-7\left(0.27^{\prime \prime}\right)}$
O	$\stackrel{\square}{9}$	
	-	

FLOAT SWITCHES
LVFS...W...
LVFS...D...

LVFSN1B..

318

Emptying function
LVM20

Emptying function with 2 electrodes

Emptying or filling functions
LVM25

(1) Delay for LVM30 only
(2) Changeover contact (SPDT) for LVM30 only.

Filling function (UP)
Connection with 3 electrodes

Connection with 2 electrodes

Connection with 2 electrodes

probe or start delay o

[^0]Multifunctions.
LVM40

(1) Probe delay + start delay.
(2) Probe delay.

Emptying function + alarms

Filling function + alarms

Emptying function + pump change

Filling function + pump change

Filling tank and draining well function + alarm

Emptying function 31LV1E

Priority change relays LVIMP05

LVMP10
2-wire connection

3-wire connection

$$
\begin{aligned}
& \text { bis }
\end{aligned}
$$

31CSP2E

20 Level controls

TYPE	LVM20...	LVM25...	LVM30...	LVM40...
DESCRIPTION				
	Modular			
	Automatic reset			
	Single voltage	Multi voltage	Dual voltage	Single voltage
Application (examples)	Emptying function	Emptying or filling function	Emptying or filling function	Multifunctions
Operating principle	Electrical conductivity of liquids			
AUXILIARY SUPPLY				
Rated supply voltage Us	24VAC	24...240VAC/DC	24/220...240VAC	24VAC
	110...127VAC		110...127/380...415VAC	110...127VAC
	220...240VAC			220...240VAC
	380...415VAC			380...415VAC
Operating voltage range	0.85...1.1 Us; $50 / 60 \mathrm{~Hz} \pm 5 \%$			
Power consumption (maximum)	3.5 VA	3VA	5.5VA	4.5VA
Power dissipation (maximum)	1.8 W	1.2W	2.8 W	2.8 W
LEVEL ELECTRODES				
Number of connectable electrodes	3	3	3	5
Type of electrode	Electrode and electrode holders: SN1 / SCM / CGL / PS31 / PS3S or similar			
Electrode voltage	7.5VAC	10Vpp	7.5VAC	10Vpp
Sensitivity	2.5...50k Ω	2.5...100k Ω	2.5...50k Ω	2.5...200k Ω
TIME DELAYS				
Tripping time (minimum)	$\leq 600 \mathrm{~ms}$	≤ 1 s	1s	1s
Resetting time (minimum)	$\leq 750 \mathrm{~ms}$	$\leq 1 \mathrm{~s}$	1s	1s
Probe tripping delay	-	-	OFF...10s	1...10s
Relay energising delay	-	-	OFF...300s	$0 . . .30 \mathrm{~min}$
RELAY OUTPUTS				
Number of relays	1	1	2	2
Relay state	Normally de-energised, energises at tripping			
Contact arrangement	1 changeover / SPDT	1 changeover / SPDT	2 changeover / SPDT each	1 changeover / SPDT and 1 with 1 N/O - SPST
Rated utilisation voltage	250VAC			
Maximum switching voltage	400VAC			
IEC conventional free air thermal current Ith	8A			
UL/CSA and IEC/EN/BS 60947-5-1 designation	B300			
Electrical life (with rated load)	10^{5} cycles			
Mechanical life	30×10^{6} cycles			
Indications	1 green LED for power on 1 red LED for relay state	1 green LED for power on 1 red LED for relay state	green LED indicator for power on 1 red LED for relay state	1 green LED indicator for power on 2 red LEDs for relay state 2 red LEDs for probe state

INSULATION

| IEC rated insulation
 voltage Ui | 415 VAC | 240 VAC | 415 VAC | 415 VAC |
| :--- | :---: | :---: | :---: | :---: | :---: |
| IEC rated impulse withstand
 voltage Uimp | 6 kV | 4 kV | 6 kV | 6 kV |
| IEC power frequency withstand
 voltage | 4 kV | 2 kV | 4 kV | 4 kV |
| Double insulation
 Supply/relay/electrode | $\leq 250 \mathrm{VAC}$ | $\leq 250 \mathrm{VAC}$ | 5250 VAC | $\leq 250 \mathrm{VAC}$ |

Supply/relay/electrode
0.8Nm (7lb.in; 7-9lb.in for UL/CSA)

Tightening torque maximum
Conductor section min-max
0.2...4mm² (24...12AWG; 18...12AWG for UL/CSA)

AMBIENT CONDITIONS

| Operating temperature | $-20 \ldots+60^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| Storage temperature | $-30 \ldots+80^{\circ} \mathrm{C}$ |

Storage temperature
$-30 . . .+80^{\circ} \mathrm{C}$
HOUSING

Material	Self-extinguishing polyamide	
Typical configuration	LVM20 $+\mathrm{n}^{\circ}$ 3 SN1 electrodes	LVM25 $+\mathrm{n}^{\circ} 3$ SN1 electrodes
(examples)	LVM30 $+\mathrm{n}^{\circ} 3$ SN1 electrodes	LVM40 $+\mathrm{n}^{\circ} 5$ SN1 electrodes

Maximum cable length
LVM30 $+\mathrm{n}^{\circ} 3$ SN1 electrodes LVM40 $+\mathrm{n}^{\circ} 5$ SN1 electrodes

[^1]| 31LV1E... 31 | LVMP05 | LVMP10 | 31CSP2E |
| :---: | :---: | :---: | :---: |
| Plug-in | Modular | Modular | Plug-in |
| Automatic resetting | - | - | - |
| Single voltage \quad Dual voltage | Multistage | Single voltage | Single voltage |
| Emptying function | Priority change relay for motors | | |
| Electrical conductivity of liquids | - | | |
| 24VAC 24/48VAC | $\begin{gathered} \text { 24/48VDC } \\ 24 \ldots . .240 V A C \end{gathered}$ | 24VAC | 24VAC(3) |
| 110...120VAC 110...120VAC/220...240VAC | | 110...127VAC | 110VAC(2) |
| $\frac{110 . . .120 \mathrm{VAC} / 220 \ldots 240 \mathrm{VAC}}{220 . . .240 \mathrm{VAC} / 380 \ldots 415 \mathrm{VAC}}$ | | 220...240VAC | 220VAC(3) |
| 380...415VAC | | 380...415VAC | 230/240VAC(2) |
| 0.8...1.1 Us; $50 / 60 \mathrm{~Hz}$ | | | |
| 5.5VA | 1.6VA | 4.8VA | 5VA |
| 2.8 W | 0.9W | 3W | 3W |
| 3 | | | \ldots |
| | - | - | - |
| Electrode and electrode holders: SN1 / SCM / CGL / PS31 / PS3S / or similar | - | - | - |
| 9VAC (voltage between probes) | - | - | - |
| $7 . .8 \mathrm{k} \Omega$ fixed | - | - | - |
| | | | |
| $\leq 50 \mathrm{~ms}$ | - | - | - |
$\leq 100 \mathrm{~ms}$	-	-	-
-	-	-	-
-			
1	2	2	2
Normally de-energised, energises at tripping			
1 changeover contact / SPDT	$2 \mathrm{~N} / \mathrm{O}$ with same common	2 N/O-SPST	2 N/O-SPST
220VAC	250VAC	250VAC	250VAC
380VAC	-	-	-
5 A	8A	8A	5A
B300	B300	B300	B300
2.5×10^{5} cycles	10^{5} cycles	10^{5} cycles	10^{5} cycles
50×10^{6} cycles	30×10^{6} cycles	30×10^{6} cycles	30×10^{6} cycles
1 red LED for relay state	1 green LED for power on 1 red LED for relay state	1 green LED for power on 2 red LED for relays state	1 green/red LED for relay state

415 VAC	250 VAC	415 VAC	250 VAC
5 kV	4 kV	4 kV	4 kV
2 kV	2 kV	2.5 kV	2.5 kV

$0.8 \mathrm{Nm}(7 \mathrm{lb} . \mathrm{in} ; 7-9 \mathrm{lb}$. in for UL/CSA $)$	-
$0.2 \ldots . .4 .0 \mathrm{~mm}^{2}(24 \ldots . .12 \mathrm{AWG}$; 18...12AWG for UL/CSA)	-

$-20 \ldots+60^{\circ} \mathrm{C}$
$-30 \ldots+80^{\circ} \mathrm{C}$

Self-extinguishing polycarbonate	Self-extinguishing polyamide	Self-extinguishing polyamide	Self-extinguishing polycarbonate
LV1E $+n^{\circ} 3$ SN1 electrode	-	-	-
LV2E $+\mathrm{n}^{\circ} 2$ SN1 electrodes + reset button		-	-
$500 \mathrm{~m} / 547 y$ single-core, double insulated cables	-	-	

[^0]: (1) Delay for LVM30 only
 (2) Changeover contact (SPDT) for LVM30 only.

[^1]: (1) Double insulation between supply, electrodes and output relay circuit.
 (2) Voltage applied to input contacts, not insulated at power supply.
 (3) Consult Technical support for more information; see contact Tel. +39 035-4282422 - E-mail: service@LovatoElectric.com

